Determination Method of Bridge Rotation Angle Response Using MEMS IMU
نویسندگان
چکیده
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.
منابع مشابه
MEMS IMU Error Mitigation Using Rotation Modulation Technique
Micro-electro-mechanical-systems (MEMS) inertial measurement unit (IMU) outputs are corrupted by significant sensor errors. The navigation errors of a MEMS-based inertial navigation system will therefore accumulate very quickly over time. This requires aiding from other sensors such as Global Navigation Satellite Systems (GNSS). However, it will still remain a significant challenge in the prese...
متن کاملA Novel System-Level Calibration Method for Gimballed Platform IMU Using Optimal Estimation
An accurate calibration of inertial measurement unit errors is increasingly important as the inertial navigation system requirements become more stringent. Developing calibration methods that use as less as possible of IMU signals has 6-DOF gimballed IMU in space-stabilized mode is presented. It is considered as held stationary in the test location incorporating 15 di...
متن کاملCervical Coupling Motion Characteristics in Healthy People Using a Wireless Inertial Measurement Unit
Objective. The objectives were to show the feasibility of a wireless microelectromechanical system inertial measurement unit (MEMS-IMU) to assess the time-domain characteristics of cervical motion that are clinically useful to evaluate cervical spine movement. Methods. Cervical spine movements were measured in 18 subjects with wireless IMUs. All rotation data are presented in the Euler angle sy...
متن کاملImplementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter
In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...
متن کاملA cascaded Kalman filter-based GPS/MEMS-IMU integration for sports applications
Nonlinear Kalman filtering methods are the most popular algorithms for integration of a MEMS-based inertial measurement unit (MEMS-IMU) with a global positioning system (GPS). Despite their accuracy, these nonlinear algorithms present a challenge in terms of the computational efficiency for portable wearable devices. We introduce a cascaded Kalman filter for GPS/MEMS-IMU integration for the pur...
متن کامل